Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(39): e2300348120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37733738

RESUMO

The intensity of muscle contraction, and therefore movement vigor, needs to be adaptable to enable complex motor behaviors. This can be achieved by adjusting the properties of motor neurons, which form the final common pathway for all motor output from the central nervous system. Here, we identify roles for a neuropeptide, cocaine- and amphetamine-regulated transcript (CART), in the control of movement vigor. We reveal distinct but parallel mechanisms by which CART and acetylcholine, both released at C bouton synapses on motor neurons, selectively amplify the output of subtypes of motor neurons that are recruited during intense movement. We find that mice with broad genetic deletion of CART or selective elimination of acetylcholine from C boutons exhibit deficits in behavioral tasks that require higher levels of motor output. Overall, these data uncover spinal modulatory mechanisms that control movement vigor to support movements that require a high degree of muscle force.


Assuntos
Acetilcolina , Sinapses , Animais , Camundongos , Terminações Pré-Sinápticas , Neurônios Motores , Sistema Nervoso Central
2.
Neuroscience ; 450: 1-2, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33234225
3.
Neuroscience ; 450: 71-80, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32750380

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that affects upper and lower motor neurons and leads to death a few years after symptom onset. Despite its high morbidity and mortality, its underlying pathogenic mechanisms still remain poorly understood. Although there is increasing evidence for significant changes in the structure and function of synapses on motor neurons, there is a need for a systematic investigation of the role of each synapse subtype in the course of the disease. Here, we focus on large cholinergic synapses on motor neurons, known as C boutons, and investigate their role during ALS progression. We implement a genetic strategy for inactivation of the cholinergic output of C boutons in the SOD1G93A transgenic mouse model of ALS. We demonstrate that although C bouton cholinergic inactivation does not alter mouse survival, it exerts a beneficial effect on motor performance in the rotarod motor task, as evidenced by an increased latency to fall in SOD1G93A mice lacking C bouton cholinergic output. Our results suggest that C bouton cholinergic transmission exerts a negative effect on motor neuron function in ALS, possibly via aberrant excitation, and render C boutons a potential target for future pharmacological intervention.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Animais , Colinérgicos , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética
4.
Elife ; 92020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081133

RESUMO

Spinal motor networks are formed by diverse populations of interneurons that set the strength and rhythmicity of behaviors such as locomotion. A small cluster of cholinergic interneurons, expressing the transcription factor Pitx2, modulates the intensity of muscle activation via 'C-bouton' inputs to motoneurons. However, the synaptic mechanisms underlying this neuromodulation remain unclear. Here, we confirm in mice that Pitx2+ interneurons are active during fictive locomotion and that their chemogenetic inhibition reduces the amplitude of motor output. Furthermore, after genetic ablation of cholinergic Pitx2+ interneurons, M2 receptor-dependent regulation of the intensity of locomotor output is lost. Conversely, chemogenetic stimulation of Pitx2+ interneurons leads to activation of M2 receptors on motoneurons, regulation of Kv2.1 channels and greater motoneuron output due to an increase in the inter-spike afterhyperpolarization and a reduction in spike half-width. Our findings elucidate synaptic mechanisms by which cholinergic spinal interneurons modulate the final common pathway for motor output.


Assuntos
Neurônios Colinérgicos/fisiologia , Interneurônios/fisiologia , Locomoção/fisiologia , Neurônios Motores/fisiologia , Sinapses/fisiologia , Animais , Feminino , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio Shab/metabolismo , Canais de Potássio Shab/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Proteína Homeobox PITX2
5.
Sci Rep ; 9(1): 4936, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894556

RESUMO

Cholinergic neuromodulation has been described throughout the brain and has been implicated in various functions including attention, food intake and response to stress. Cholinergic modulation is also thought to be important for regulating motor systems, as revealed by studies of large cholinergic synapses on spinal motor neurons, called C boutons, which seem to control motor neuron excitability in a task-dependent manner. C boutons on spinal motor neurons stem from spinal interneurons that express the transcription factor Pitx2. C boutons have also been identified on the motor neurons of specific cranial nuclei. However, the source and roles of cranial C boutons are less clear. Previous studies suggest that they originate from Pitx2+ and Pitx2- neurons, in contrast to spinal cord C boutons that originate solely from Pitx2 neurons. Here, we address this controversy using mouse genetics, and demonstrate that brainstem C boutons are Pitx2+ derived. We also identify new Pitx2 populations and map the cholinergic Pitx2 neurons of the mouse brain. Taken together, our data present important new information about the anatomical organization of cholinergic systems which impact motor systems of the brainstem. These findings will enable further analyses of the specific roles of cholinergic modulation in motor control.


Assuntos
Tronco Encefálico/citologia , Neurônios Colinérgicos/citologia , Interneurônios/citologia , Neurônios Motores/citologia , Terminações Pré-Sinápticas/fisiologia , Animais , Tronco Encefálico/fisiologia , Neurônios Colinérgicos/metabolismo , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Medula Espinal/citologia , Medula Espinal/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
6.
J Neurosci ; 38(44): 9539-9550, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30242051

RESUMO

We identify Sox14 as an exclusive marker of inhibitory projection neurons in the lateral and interposed, but not the medial, cerebellar nuclei. Sox14+ neurons make up ∼80% of Gad1+ neurons in these nuclei and are indistinguishable by soma size from other inhibitory neurons. All Sox14+ neurons of the lateral and interposed cerebellar nuclei are generated at approximately E10/10.5 and extend long-range, predominantly contralateral projections to the inferior olive. A small Sox14+ population in the adjacent vestibular nucleus "Y" sends an ipsilateral projection to the oculomotor nucleus. Cerebellar Sox14+ and glutamatergic projection neurons assemble in non-overlapping populations at the nuclear transition zone, and their integration into a coherent nucleus depends on Sox14 function. Targeted ablation of Sox14+ cells by conditional viral expression of diphtheria toxin leads to significantly impaired motor learning. Contrary to expectations, associative learning is unaffected by unilateral Sox14+ neuron elimination in the interposed and lateral nuclei.SIGNIFICANCE STATEMENT The cerebellar nuclei are central to cerebellar function, yet how they modulate and process cerebellar inputs and outputs is still primarily unknown. Our study gives a direct insight into how nucleo-olivary projection neurons are generated, their projections, and their function in an intact behaving mouse. These neurons play a critical conceptual role in all models of cerebellar function, and this study represents the first specific analysis of their molecular identity and function and offers a powerful model for future investigation of cerebellar function in motor control and learning.


Assuntos
Aprendizagem por Associação/fisiologia , Núcleos Cerebelares/metabolismo , Núcleo Olivar/metabolismo , Fatores de Transcrição SOXB2/deficiência , Animais , Células Cultivadas , Núcleos Cerebelares/química , Cerebelo/química , Cerebelo/metabolismo , Feminino , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/química , Vias Neurais/metabolismo , Núcleo Olivar/química , Fatores de Transcrição SOXB2/genética
7.
Nat Commun ; 7: 13579, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929058

RESUMO

The release of GABA from local interneurons in the dorsal lateral geniculate nucleus (dLGN-INs) provides inhibitory control during visual processing within the thalamus. It is commonly assumed that this important class of interneurons originates from within the thalamic complex, but we now show that during early postnatal development Sox14/Otx2-expressing precursor cells migrate from the dorsal midbrain to generate dLGN-INs. The unexpected extra-diencephalic origin of dLGN-INs sets them apart from GABAergic neurons of the reticular thalamic nucleus. Using optogenetics we show that at increased firing rates tectal-derived dLGN-INs generate a powerful form of tonic inhibition that regulates the gain of thalamic relay neurons through recruitment of extrasynaptic high-affinity GABAA receptors. Therefore, by revising the conventional view of thalamic interneuron ontogeny we demonstrate how a previously unappreciated mesencephalic population controls thalamic relay neuron excitability.


Assuntos
Interneurônios/fisiologia , Inibição Neural/fisiologia , Colículos Superiores/fisiologia , Tálamo/fisiologia , Vias Visuais/fisiologia , Animais , Biomarcadores/metabolismo , Linhagem da Célula , Movimento Celular , Corpos Geniculados/citologia , Masculino , Camundongos Endogâmicos C57BL , Fatores de Transcrição Otx/metabolismo , Fatores de Transcrição SOXB2/metabolismo , Células-Tronco/metabolismo , Ácido gama-Aminobutírico/metabolismo
8.
J Anat ; 224(1): 52-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23701140

RESUMO

Motor control circuitry of the central nervous system must be flexible so that motor behaviours can be adapted to suit the varying demands of different states, developmental stages, and environments. Flexibility in motor control is largely provided by neuromodulatory systems which can adjust the output of motor circuits by modulating the properties and connectivity of neurons within them. The spinal circuitry which controls locomotion is subject to a range of neuromodulatory influences, including some which are intrinsic to the spinal cord. One such intrinsic neuromodulatory system, for which a wealth of anatomical information has recently been combined with new physiological data, is the C bouton system. C boutons are large, cholinergic inputs to motor neurons which were first described over 40 years ago but whose source and function have until recently remained a mystery. In this review we discuss how the convergence of anatomical, molecular genetic and physiological data has recently led to significant advances in our understanding of this unique neuromodulatory system. We also highlight evidence that C boutons are involved in spinal cord injury and disease, revealing their potential as targets for novel therapeutic strategies.


Assuntos
Neurônios Motores/fisiologia , Medula Espinal/citologia , Sinapses/fisiologia , Acetilcolina/metabolismo , Humanos , Atividade Motora/fisiologia , Medula Espinal/fisiologia
9.
Neuron ; 80(4): 920-33, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24267650

RESUMO

Locomotion is controlled by spinal networks that generate rhythm and coordinate left-right and flexor-extensor patterning. Defined populations of spinal interneurons have been linked to patterning circuits; however, neurons comprising the rhythm-generating kernel have remained elusive. Here, we identify an ipsilaterally projecting excitatory interneuron population, marked by the expression of Shox2 that overlaps partially with V2a interneurons. Optogenetic silencing or blocking synaptic output of Shox2 interneurons (INs) in transgenic mice perturbed rhythm without an effect on pattern generation, whereas ablation of the Shox2 IN subset coinciding with the V2a population was without effect. Most Shox2 INs are rhythmically active during locomotion and analysis of synaptic connectivity showed that Shox2 INs contact other Shox2 INs, commissural neurons, and motor neurons, with preference for flexor motor neurons. Our findings focus attention on a subset of Shox2 INs that appear to participate in the rhythm-generating kernel for spinal locomotion.


Assuntos
Proteínas de Homeodomínio/fisiologia , Interneurônios/fisiologia , Locomoção/fisiologia , Animais , Axônios/fisiologia , Dependovirus/genética , Fenômenos Eletrofisiológicos , Agonistas de Aminoácidos Excitatórios/farmacologia , Inativação Gênica , Ácido Glutâmico/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Neurônios Motores/fisiologia , N-Metilaspartato/farmacologia , Vias Neurais/fisiologia , Optogenética , Serotonina/farmacologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/fisiologia
10.
Neuron ; 75(4): 648-62, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22920256

RESUMO

Intrinsically photosensitive retinal ganglion cells (ipRGCs) and their nuclear targets in the subcortical visual shell (SVS) are components of the non-image-forming visual system, which regulates important physiological processes, including photoentrainment of the circadian rhythm. While ipRGCs have been the subject of much recent research, less is known about their central targets and how they develop to support specific behavioral functions. We describe Sox14 as a marker to follow the ontogeny of the SVS and find that the complex forms from two narrow stripes of Dlx2-negative GABAergic progenitors in the early diencephalon through sequential waves of tangential migration. We characterize the requirement for Sox14 to orchestrate the correct distribution of neurons among the different nuclei of the network and describe how Sox14 expression is required both to ensure robustness in circadian entrainment and for masking of motor activity.


Assuntos
Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Ganglionares da Retina/fisiologia , Fatores de Transcrição SOXB2/metabolismo , Células-Tronco/fisiologia , Vias Visuais/fisiologia , Ácido gama-Aminobutírico/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Temperatura Corporal/genética , Movimento Celular/genética , Distribuição de Qui-Quadrado , Ritmo Circadiano/genética , Diencéfalo/citologia , Diencéfalo/embriologia , Diencéfalo/crescimento & desenvolvimento , Embrião de Mamíferos , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/genética , Mutação/genética , Neurogênese/genética , Técnicas de Cultura de Órgãos , Estimulação Luminosa , Reflexo/genética , Fatores de Transcrição SOXB2/genética , Fatores de Transcrição/deficiência , Transdução Genética/métodos , Vias Visuais/citologia
11.
J Comp Neurol ; 518(23): 4675-701, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20963823

RESUMO

The diversity of premotor interneurons in the mammalian spinal cord is generated from a few phylogenetically conserved embryonic classes of interneurons (V0, V1, V2, V3). Their mechanisms of diversification remain unresolved, although these are clearly important to understand motor circuit assembly in the spinal cord. Some Ia inhibitory interneurons (IaINs) and all Renshaw cells (RCs) derive from embryonic V1 interneurons; however, in adult they display distinct functional properties and synaptic inputs, for example proprioceptive inputs preferentially target IaINs, while motor axons target RCs. Previously, we found that both inputs converge on RCs in neonates, raising the possibility that proprioceptive (VGLUT1-positive) and motor axon synapses (VAChT-positive) initially target several different V1 interneurons populations and then become selected or deselected postnatally. Alternatively, specific inputs might precisely connect only with predefined groups of V1 interneurons. To test these hypotheses we analyzed synaptic development on V1-derived IaINs and compared them to RCs of the same age and spinal cord levels. V1-interneurons were labeled using genetically encoded lineage markers in mice. The results show that although neonatal V1-derived IaINs and RCs are competent to receive proprioceptive synapses, these synapses preferentially target the proximal somato-dendritic regions of IaINs and postnatally proliferate on IaINs, but not on RCs. In contrast, cholinergic synapses on RCs are specifically derived from motor axons, while on IaINs they originate from Pitx2 V0c interneurons. Thus, motor, proprioceptive, and even some interneuron inputs are biased toward specific subtypes of V1-interneurons. Postnatal strengthening of these inputs is later superimposed on this initial preferential targeting.


Assuntos
Axônios/fisiologia , Interneurônios/fisiologia , Neurônios Motores/fisiologia , Inibição Neural/fisiologia , Propriocepção/fisiologia , Medula Espinal/crescimento & desenvolvimento , Transmissão Sináptica/fisiologia , Animais , Técnicas de Introdução de Genes , Interneurônios/citologia , Camundongos , Camundongos Transgênicos , Neurônios Motores/citologia , Medula Espinal/citologia , Células-Tronco/citologia , Células-Tronco/fisiologia
12.
Neuron ; 64(5): 645-62, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20005822

RESUMO

Mammalian motor programs are controlled by networks of spinal interneurons that set the rhythm and intensity of motor neuron firing. Motor neurons have long been known to receive prominent "C bouton" cholinergic inputs from spinal interneurons, but the source and function of these synaptic inputs have remained obscure. We show here that the transcription factor Pitx2 marks a small cluster of spinal cholinergic interneurons, V0(C) neurons, that represents the sole source of C bouton inputs to motor neurons. The activity of these cholinergic interneurons is tightly phase locked with motor neuron bursting during fictive locomotor activity, suggesting a role in the modulation of motor neuron firing frequency. Genetic inactivation of the output of these neurons impairs a locomotor task-dependent increase in motor neuron firing and muscle activation. Thus, V0(C) interneurons represent a defined class of spinal cholinergic interneurons with an intrinsic neuromodulatory role in the control of locomotor behavior.


Assuntos
Acetilcolina/metabolismo , Interneurônios/fisiologia , Atividade Motora/fisiologia , Medula Espinal/citologia , Potenciais de Ação/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Colina O-Acetiltransferase/deficiência , Colina O-Acetiltransferase/genética , Eletromiografia , Potenciais Pós-Sinápticos Excitadores/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/genética , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Músculo Esquelético/fisiologia , Rede Nervosa/metabolismo , Vias Neurais/fisiologia , Técnicas de Patch-Clamp/métodos , Fatores de Transcrição SOXB2/genética , Medula Espinal/crescimento & desenvolvimento , Sinapses/metabolismo , Fatores de Transcrição/genética , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Proteínas tau/metabolismo , Proteína Homeobox PITX2
13.
Neuron ; 60(1): 70-83, 2008 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-18940589

RESUMO

The initiation and coordination of activity in limb muscles are the main functions of neural circuits that control locomotion. Commissural neurons connect locomotor circuits on the two sides of the spinal cord, and represent the known neural substrate for left-right coordination. Here we demonstrate that a group of ipsilateral interneurons, V2a interneurons, plays an essential role in the control of left-right alternation. In the absence of V2a interneurons, the spinal cord fails to exhibit consistent left-right alternation. Locomotor burst activity shows increased variability, but flexor-extensor coordination is unaffected. Anatomical tracing studies reveal a direct excitatory input of V2a interneurons onto commissural interneurons, including a set of molecularly defined V0 neurons that drive left-right alternation. Our findings imply that the neural substrate for left-right coordination consists of at least two components; commissural neurons and a class of ipsilateral interneurons that activate commissural pathways.


Assuntos
Lateralidade Funcional/fisiologia , Deleção de Genes , Interneurônios/fisiologia , Atividade Motora/fisiologia , Recombinação Genética , Medula Espinal/fisiologia , Vias Aferentes/fisiologia , Animais , Estimulação Elétrica/métodos , Feminino , Lateralidade Funcional/genética , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Desempenho Psicomotor/fisiologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
14.
Genomics ; 81(2): 108-11, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12620388

RESUMO

We tested the suitability of the fly transposon Minos, a member of the Tc1/mariner superfamily, for insertional mutagenesis in the mouse germ line. We generated a transgenic mouse line expressing Minos transposase in growing oocytes and another carrying a tandem array of nonautonomous transposons. The frequency of transposition in the progeny derived from oocytes carrying both transgenes is 8.2%. Analysis of the new integration sites shows a high frequency of transpositions to a different chromosome. Thus Minos transposition could be an effective system for insertional mutagenesis and functional genomic analysis in the mouse.


Assuntos
Elementos de DNA Transponíveis , Drosophila/genética , Animais , Southern Blotting , Hibridização in Situ Fluorescente , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...